Robust maximum likelihood training of heteroscedastic probabilistic neural networks

نویسندگان

  • Zheng Rong Yang
  • Sheng Chen
چکیده

We consider the probabilistic neural network (PNN) that is a mixture of Gaussian basis functions having different variances. Such a Gaussian heteroscedastic PNN is more economic, in terms of the number of kernel functions required, than the Gaussian mixture PNN of a common variance. The expectation-maximisation (EM) algorithm, although a powerful technique for constructing maximum likelihood (ML) homoscedastic PNNs, often encounters numerical difficulties when training heteroscedastic PNNs. We combine a robust statistical technique known as the Jack-knife with the EM algorithm to provide a robust ML training algorithm. An artificial-data case, the two-dimensional XOR problem, and a real-data case, success or failure prediction of UK private construction companies, are used to evaluate the performance of this robust learning algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Training for Probabilistic Spiking Neural Networks

Classifiers trained using conventional empirical risk minimization or maximum likelihood methods are known to suffer dramatic performance degradations when tested over examples adversarially selected based on knowledge of the classifier’s decision rule. Due to the prominence of Artificial Neural Networks (ANNs) as classifiers, their sensitivity to adversarial examples, as well as robust trainin...

متن کامل

Comparison of two different PNN training approaches for satellite cloud data classification

Presents a training algorithm for probabilistic neural networks (PNN) using the minimum classification error (MCE) criterion. A comparison is made between the MCE training scheme and the widely used maximum likelihood (ML) learning on a cloud classification problem using satellite imagery data.

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

Intelligent Forecasting Method for Slope Stability Estimation by Using Probabilistic Neural Networks

The purpose of this article is to demonstrate the application of probabilistic neural networks (PNNs) as a classification tool in the slope stability estimation. PNNs are applied to estimate slope stability according to the slope geometric shapes and soil mechanical parameters. Unlike other neural network training paradigms, PNNs are characterized by high training speed and their ability to pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 1998